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Abstract: For many years there has been some question whether one should correct for the effects of molecular symmetry, in 
the rate expressions of transition state theory, by simply using symmetry numbers, as one does in the equilibrium expressions 
of statistical thermodynamics; several authors have asserted that the correct rate expressions should instead contain "statistical 
factors", which are dynamically defined numbers characteristic of the reaction mechanism. We show that the use of symmetry 
numbers is always correct, and that statistical factor rate expressions—when they differ from their symmetry number counter­
parts—are wrong. Special attention is given to reactions involving optically active species, and to symmetric reactions, where 
it is easy to make mistakes in writing down transition state theory rate expressions. The implications for the BrjiSnsted relations 
of acid-base catalysis are discussed. 

I. Introduction 

Over the past 15 years it has become widely accepted that 
in applications of absolute rate theory the symmetry of a re­
acting species or transition state is not always correctly taken 
into account by the use of symmetry numbers.1-7 Two par­
ticular objections to the use of symmetry numbers have been 
raised: first, the symmetry number method seems to give 
clearly incorrect rate expressions for symmetric reactions;1 ~3'6,8 

and second, complications arise for reactions that involve op­
tically active species. 1^3'6-9-12 Several authors have therefore 
proposed that one should use so-called "statistical factors" or 
"reaction path degeneracies" instead of symmetry num­
bers;1 '3 '6 the definition of statistical factors seems to ensure 
that one obtains correct expressions in these cases. 

More recently, however, a number of authors6-13~15 have 
pointed out that the use of statistical factors cannot always be 

correct, for in some reactions the ratio of forward to backward 
rate constant—when these are evaluated using statistical 
factors—does not equal the equilibrium constant. There is 
therefore a puzzle: apparently symmetry numbers are not al­
ways enough but on the other hand statistical factors can also 
lead to error; what then is the correct way of accounting for 
symmetry in transition state theory? 

In this paper we show that the symmetry number method, 
properly applied, will always lead to correct rate expressions. 
Statistical factor rate expressions, when they differ from their 
symmetry number counterparts, are therefore wrong. 

We emphasize that the suspicious phrase "properly applied", 
in the paragraph above, is not meant to cover magic or fraud. 
The rate expressions given by the symmetry number method 
are unambiguous, and they are correct, but it is easy to make 
mistakes writing them down for symmetric reactions and for 
reactions involving optically active species. 

0002-7863/78/1500-2984S01.00/0 © 1978 American Chemical Society 
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Here is the plan of the paper: In section II we give a 
mathematically precise definition of what we mean by statis­
tical factors; this definition is our interpretation of the 1969 
Bishop and Laidler prescription15 that the statistical factor for 
a process is the number of "chemically plausible" products that 
can be formed if all identical atoms in the reactant molecules 
are labeled. In section III we comment on the violation of de­
tailed balance by the statistical factor method, and we discuss 
and reject a solution to the problem proposed by Murrell and 
Laidler13 (see also Laidler6). Section IV proves the validity of 
the symmetry number method, by an argument that makes 
direct use of statistical factors. In sections V and VI we outline 
the proper application of the symmetry number method to 
reactions involving optically active species and to symmetric 
reactions. Symmetry corrections to the Br^nsted relations of 
acid-base catalysis are discussed in section VII. We conclude 
with a sampling of particular examples, in section VIII, to il­
lustrate the application of the symmetry number method. 

Finally, we should mention that while awaiting journal ac­
ceptance of this paper we received a preprint from D. R. 
Coulson18 on the same subject and with much the same con­
clusions. The reader should consult Coulson's paper for other 
arguments to the effect that the symmetry number rate ex­
pressions are correct. 

II. Symmetry Numbers and Statistical Factors 

Suppose that like atoms in a molecule could be distinguished, 
by labels. Then from one equilibrium configuration of the la­
beled molecule others could be made, by permutation of like 
atoms; the total number of configurations generated in this way 
would be IL Nj[, where TV, is the number of atoms of type i in 
the molecule. Some of these configurations might be related 
to others by a rotation of the molecule as a whole; we say that 
two equilibrium configurations of the labeled molecule are 
physically distinct if one cannot be superimposed on the other 
by a rigid displacement—by translation and/or rotation. The 
number of physically distinct configurations of the molecule 
is LL Nj]/a where a is the molecule's symmetry number, and 
this relation may be used as the definition of the symmetry 
number. For example, labeled methane has just two physically 
distinct configurations, which are mirror images of each other, 
and therefore the symmetry number of methane is 12. 

Suppose now that the molecule—call it A—participates in 
a unimolecular reaction A «=> C that proceeds through a 
"transition state" intermediate T, 

A *±T<=t C (1) 

The transition state geometry is, of course, just a different 
arrangement in space of the £,• Nj atoms that make up A, and 
the number of physically distinct configurations of labeled T 
is LT, Nf]/(TT where aj is the symmetry number of the transi­
tion state. 

Statistical factors for reaction 1 are defined with reference 
to the potential energy surface governing the reaction. Let Ej 
be the potential energy of the transition state, presumed greater 
than EA or Ec, the potential energies of reactant and product, 
respectively. Suppose that a given configuration of labeled A 
and a given configuration of labeled T can be connected by a 
path in nuclear configuration space on which the potential 
energy is less than Ej at all points but the end point at T; then 
that configuration of T is an intermediate for reaction from the 
given configuration of A, in the sense that one can reach it from 
A without first passing through another transition state or a 
configuration of even higher potential energy. The statistical 
factor /A—the statistical factor for leaving A in the process A 
—* T—is the number of physically distinct configurations of 
labeled T that are intermediates for reaction from one con­
figuration of labeled A. 

It is not hard to show that the statistical factor /A is well 
defined by the preceding paragraph—that /A does not depend 
on the particular configuration of labeled A that one selects 
as starting point. The essence of the argument is this: two 
physically distinct configurations of labeled A differ—aside 
from a rigid displacement—by a permutation of like atoms; 
if from one configuration of A one can reach /A physically 
distinct configurations of labeled T, then from the other con­
figuration of A one can reach those /A configurations of T 
obtained by the appropriate permutation of like atoms; these 
/A configurations are in fact physically distinct, for a common 
permutation applied to physically distinct configurations gives 
physically distinct configurations. 

The statistical factor /*A for returning to A from T is defined 
in similar fashion as the number of physically distinct config­
urations of labeled A that can be reached, from one configu­
ration of T, by paths on which the unique point of highest po­
tential energy is the starting point at T. To the product side of 
T we have, with analogous definitions, the statistical factor IQ 
for leaving C in the process C —»• T and the statistical factor 
A-C for returning to C from T. 

To calculate statistical factors one often needs some 
knowledge of the potential surface governing the reaction; to 
calculate symmetry numbers one need only know molecular 
geometries. Nevertheless, statistical factors and symmetry 
numbers are not entirely unrelated: Bishop and Laidler3'15 

showed that 

/ A / C A = rA/<Tj (2) 

/c/crc = rc/<rj (3) 

We shall use eq 2 and 3 in sections III and IV. These equations 
follow so directly from our definition of statistical factors that 
we give the proof. Choose LL N,\/a\ physically distinct con­
figurations of labeled A and LL NjI/aj physically distinct 
configurations of labeled T. Each configuration of A connects 
to /A configurations of T by paths on which T is the unique 
point of highest potential energy, and each configuration of 
T connects to r& configurations of A by paths on which T is the 
unique point of highest potential energy. Connections are re­
versible: if a configuration of A connects to a configuration of 
T, then that configuration of T connects to that configuration 
of A. Therefore the total number of connections from A, /A IL 
Nj\/<y\, equals the total number of connections from T, /1AIL 
NjI/(Tj, and eq 2 follows. Equation 3 is proved in analogous 
fashion. 

Minor modifications in the definitions above are needed for 
the case of a bimolecular reaction, 

A + B ^ T ^ C + D (4) 

Here an equilibrium configuration of labeled reactants—a 
minimum on the potential energy surface—is a configuration 
in which A and B are held in fixed relative orientation and at 
a fixed distance from one another by weak van der Waals 
forces. The barrier to free rotation of the separated molecules 
is usually negligible in comparison with the activation barrier 
to reaction, so two equilibrium configurations of labeled 
reactants are considered physically distinct only if they cannot 
be superimposed by translation and rotation of the individual 
molecules A and B. If A and B are molecules of different type, 
the number of physically distinct reactant configurations is 
then LL NJ\/OA.OB, where Nj is the total number of atoms of 
type i in molecules A and B and <TA and <TB are the symmetry 
numbers of the individual molecules. Statistical factors are 
defined as before: /A+B is the number of physically distinct 
configurations of T that can be reached from a given config­
uration of A + B, and /-A+B is the number of physically distinct 
configurations of A + B that can be reached from a given 
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configuration of T, by paths on which T is the unique point of 
highest potential energy; and 

/A + B / C A ^ B - ''A + B/ffT (5a) 

I f A = B, the number of physically distinct reactant configu­
rations is n,- Njl/2(jA

2, since the particular permutation of like 
atoms that interchanges the two molecules can be effected by 
simply moving each molecule to where the other was. In this 
CO CP 1 " 

/ A + A / 2 < T A 2 - rA+A/ffj (5b) 

We close this section by listing various transition state theory 
rate expressions, to establish notation. For the moment we 
exclude reactions that involve optically active species (see 
section V) and symmetric reactions (see section VI). Then 
according to the symmetry number method the forward and 
backward rate constants for the unimolecular reaction (1) 
are 

jret/,T 
f h Ql/aA 

_kTQ°T/aT 

h Sc/^c 
while the statistical factor method gives 

kt~ hUQ\ kh~Tlc^c
 ( 7 ) 

Here Q0 denotes partition functions evaluated without sym­
metry numbers—that is, as if like atoms in A, T, and C were 
distinguishable—and energies are measured with respect to 
a common zero, so that Q° contains a factor exp(—E^f kT), 
Q°A a factor exp(—EA/kT), and so on. For the bimolecular 
reaction (4) the corresponding expressions are of course 

kT Q1IoJ _ kT Q°j/cT 

b h Q°cQ°D/*C°D { ' 
k{ = 

h QlQlI c^K 

according to the symmetry number method and 

*f'T/A+Be«Gl 
k - k T I Q°T <9) 
kb~Tlc+0ojQj (9) 

according to the statistical factor method. 

III. Violation of Detailed Balance by the Statistical Factor 
Method 

Using eq 2 and 3, one finds that the symmetry number rate 
equations (6) agree with the statistical factor expressions (7) 
if and only if rA = re = 1; similarly, expressions 8 and 9 agree 
only if Z-A+B = >"C+D = 1 -20 The reactions of interest, then, are 
those in which a given transition state connects to two or more 
physically distinct configurations of labeled reactant and/or 
product. 

Now whether or not the symmetry number expressions 6 are 
correct, their ratio gives the correct statistical mechanical 
expression for the equilibrium constant. This is true of the 
statistical factor rate expressions 7 only if ^A = ^c; otherwise, 
we have 

kr/kh = (UIIc)(Q0ClQi) 
= (rAlrC)(Q0c/<Tc)l(Q%/aA) = (rA/rc)Keq 

the statistical factor method violates the principle of detailed 
balance, and k( or kt, or both must be wrong. This is not a new 
observation,6' 13~15 but we have a few comments to make on it 
before turning to the symmetry number method. 

Reactions that proceed through a transition state of suffi­
ciently high symmetry must yield such violations of detailed 
balance by the statistical factor method. In fact, if or > 
n,A',!(7c/(TA then necessarily re > rA; for 

rc = Icoj/ac > ffj/o-c > I L Ni\/o\ S= rA 

since rA cannot be greater than the total number of physically 
distinct configurations of labeled A. Similarly, if <XT > 
HiNjIcA/ac then necessarily rA > rC- Analogous inequalities 
apply to bimolecular reactions. 

The simplest example of a high-symmetry transition state 
is a Cu- intermediate for reaction of an atom with a homonu-
clear diatomic, 

A + B2 

°A ^B, = 2 

I = 1 

T = 1 

• - B 

-*B 
Oi=2 

r=2 

1 = 1 
AB + B 

Here or > 2!ffABffB/CA^B2, so necessarily rAB+B > ^+B2- (The 
reader should check that the /'s and r's must be as shown, for 
there is only one physically distinct configuration of labeled 
reactant and only one of labeled transition state.) Since ^ + B 2 

ŝ  '"AB+B, the statistical factor rate expressions in this case 
must violate the principle of detailed balance. 

This example has been discussed in detail by Murrell and 
Pratt.14 The essential point is not that a Civ structure is nec­
essarily the correct transition state for any given reaction A 
+ B2 -*• AB + B, but rather that it could be—that one can 
imagine a potential surface (see Murrell and Pratt14 for pic­
tures) on which a Cu- structure is the transition state without 
breaking any basic rules of physics or mathematics. 

In a paper that preceded the Murrell and Pratt contribution 
Murrell and Laidler13 (see also Laidler6) proposed that one 
should exclude all transition states for which the "return" 
statistical factors r do not equal unity. This is one way to re­
solve the disagreement between the statistical factor method 
and the symmetry number method in absolute rate theory, by 
restricting the theory to those cases where there is no dis­
agreement, but it is unacceptable, because it would exclude not 
only reactions that proceed through transition states of pecu­
liarly high symmetry but also, for example, most of organic 
chemistry. When like atoms are labeled, most organic mole­
cules have physically distinct configurations separated by 
rather small barriers—usually, barriers to rotation about a 
single bond—and if one can descend to one of these configu­
rations, from a higher energy transition state, then one can also 
get down to the others. The Murrell-Laidler proposal would 
exclude from consideration all nontrivial reactions that con­
sume or produce such molecules. 

There is a restriction on transition state theory, which will 
figure in some of the discussion in sections IV and V; we discuss 
it here because it relates to the Murrell-Laidler proposal. 
Murrell and Laidler would restrict transition state theory to 
those reactions in which a given transition state connects to 
only one physically distinct configuration of labeled reactant 
and only one of labeled product. Actually, all we should re­
quire, for unambiguous application of the theory, is that a 
transition state connect to only one species of unlabeled 
reactant and only one of unlabeled product, so that we can say 
with certainty what product is formed by breakup of the 
transition state and what reactant is responsible for it.21 This 
is an elementary point, but one worth emphasizing. Thus we 
should expect from transition state theory a definite prediction 
of the rate constants for the reaction 

.'B 
A + B2 -> A;' I - AB + B 

X B 

even though this reaction falls outside the Murrell-Laidler 
proposal and even though the statistical factor rate expressions 
for it must be incorrect, since they violate detailed balance. But 
if we make an isotopic substitution and study the two distinct 
reactions 
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L1 
A + BB' 

AB+ B' 

AB'+ B 

and if both reactions proceed through a common transition 
state 

A' 

then we cannot expect from transition state theory an unam­
biguous determination of the forward rate constants k\ and 
ki or the backward rate constants k-\ and fc_2. From transi­
tion state theory we can calculate the total rate of formation 
of product, 

(*, + Zc2)[A][BB'] = XTTTT- WW] 
n QAQW 

but we do not know how much of this rate to assign to reaction 
1 and how much to reaction 2—we do not know the branching 
ratios for breakup of the transition state. Similarly, in the 
backward direction we can calculate the total rate of formation 
of A + BB' from an equilibrium mixture of AB', AB, B, and 
B', 

fc_i[AB][B'] +fc_2[AB'][B] 

= f ? r V [ A B ] [ B ' ] = T r T 2 V [AB'1[B] 

n QAKQW n QAWQB 

but this tells us only that 
0ABeB'*-i + eAB'6BA:-2 = (kT/h)QT 

IV. The Symmetry Number Method 

Although the rate expressions of the statistical factor method 
are not, in general, correct, statistical factors do have a place 
in rate theory: here we show that they can be used to derive the 
rate expressions of the symmetry number method! 

As before, we exclude for the moment processes that involve 
optically active species, and symmetric reactions such as in­
ternal rotation or symmetric atom exchange (e.g., H + H2 -* 
H2-I-H). 

Consider the unimolecular reaction 1, 

A ^ T ^ C 

We imagine, as before, that like atoms are distinguished by 
labels. Suppose further that labeled molecules could be sepa­
rated, by an omnipotent chemist; then the number of different 
A molecules possible would be the number of physically dis­
tinct configurations of labeled A, TIiNiI/o\. Let us call these 
distinct A molecules A7-, j = 1 to TIiNiI/a A- Similarly, the 
distinct transition states are T^, k = 1 to Tl; NjI/aj, and the 
distinct products are C/, / = 1 to Tlt'./oc-

The symmetry number of each A7-, T*, or C/ is of course 
unity, since all atoms in these molecules are distinguished by 
labels. 

Now imagine the reaction mixture at complete chemical 
equilibrium. The concentration of each of the reactants Aj is 
the same and proportional to Q%; the concentration of each of 
the products C; is the same and proportional to Qc; and we 
have, for any / and any/, 

[C,]/[\J] = QC/Q°A 

If [C] is the total concentration of C molecules, regardless of 
type, and [A] the total concentration of A molecules, then 

[C]/[A] = E [Q]/E [A7] 
' j 

= (nwG&/«rc)/(nwei/ffA) = (Q°C/Vc)KQi/^) 
as should be. 

Now consider the rate of passage through a particular 
transition state T^, in the direction of product. By familiar 
arguments,6 this is 

h Q°, 
(10) 

No symmetry numbers appear because all species involved 
have symmetry numbers of unity. 

Tjt connects to re different products C;. To calculate the rate 
of formation of each of these products from T^ we need to 
know, as emphasized in the last section, how much of the rate 
(10) leads to each product—that is, the branching ratios for 
decomposition of the transition state T*. Let us make the 
simplest assumption, that these branching ratios are all the 
same and therefore equal to 1/rc It will be evident later that 
our conclusion, eq 13, in no way depends on this assump­
tion. 

Consider, then, a given product C/. At equilibrium, it is 
being produced by /c distinct transition states, at a rate from 
each that is l/7c times the rate (10). Therefore the rate of 
formation of Q is 

re h Ql [Aj] 

The total rate of formation of C molecules, irrespective of 
type, is n,- NjI/(7c times this rate, 

2^!ic kTQl [A, = m , krgy<n 
cc re h Ql[Ali [ r - h Ql [ A ' J U 2 ) 

We have used eq 3. But 11/W[A7] = <rA[A], and we have fi­
nally that the total rate of formation of C is 

kT Q0TZa1 

( H ) 

h Ql/oh 
[A] (13) 

This is just the rate expression (6) of the symmetry number 
method.22 

We conclude that the correct rate expressions of transition 
state theory must be those of the symmetry number method. 
Indeed, it could not be otherwise without violating the laws of 
statistical thermodynamics. At equilibrium the concentration 
of transition state intermediates is given in terms of partition 
functions that involve symmetry numbers, not statistical fac­
tors. The rate at which intermediates move into the product 
region, along the reaction coordinate, is then just the symmetry 
number rate. This is the correct rate of reaction, given the two 
dynamical assumptions of transition state theory23—the "no 
return" assumption that systems that leave the transition state 
in either product or reactant direction in fact make it all the 
way to product or reactant, and the "equilibrium" assumption 
that the observed rate of product formation, in a nonequilib-
rium kinetics experiment, is equal to the rate of product for­
mation calculated as if reactants were at equilibrium. 

The cases in which the symmetry number rate expressions 
are "obviously" wrong are usually reactions involving optically 
active species or symmetric reactions. We discuss these now 
in more detail. 

V. Reactions Involving Optically Active Species 

There is no possibility of confusion, in dealing with reactions 
involving optically active species, if one keeps in mind that 
optical enantiomers, although symmetry related, are different 
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molecules. The correct rate expressions are then given directly 
by the symmetry number method, without special factors, for 
each elementary reaction in which the transition state connects 
to only one species of reactant and only one of product (see the 
discussion at the end of section III); but with reactions of op­
tically active species it is often possible to deduce branching 
ratios from symmetry and therefore extend transition state 
theory beyond its "natural" limits; and one has also to take 
account of all elementary reactions going on. We illustrate 
these points with a brief discussion of the three possible 
cases. 

1. If the transition state is optically active but reactants and 
products are not, the reaction rate is twice that calculated from 
either transition state enantiomer alone, for both are accessible 
to reactants and products and by symmetry contribute equally 
to the rate. There are in fact two elementary reactions going 
on; in the unimolecular case, these are 

A C 

T* 

where T* is the mirror image of T, and the rate constants for 
each elementary reaction are given by the symmetry number 
expressions. 

2. If reactants and/or products are optically active but the 
transition state is not, the branching ratios for breakup of the 
transition state to the reactant and/or product enantiomers 
must be V2, by symmetry. It is therefore possible to calculate 
the various rate constants from enantiomer to enantiomer even 
though the transition state connects to more than one reactant 
and/or product (see the remarks at the end of section III). 
Consider, for example, the reactions 

A 
^ b 

l-C 
kb 

d-C (14) 

Here the total rate through the transition state, in product 
direction, is 

h QlIo* l A J 

From eq 14 this is also equal to 2fcf[A]. The total rate through 
the transition state, in reactant direction, from a racemic 
mixture of /-C and d-C, is 

h Ql/oc h Ql/ac 

where Qc and ac are the partition function and symmetry 
number of one enantiomer of C; from eq 14 this is also equal 
to MU-C] + [d-C]) = 2kh[l-C] = 2kb[d-C}. Therefore 

_kT Q0Ja1 _kT Q0Ja1 
K{ IhQlIvx

 Kb 2hQ°Jac 

Similar considerations give the rate constants fcf and k\, for 
the set of unimolecular reactions 

/-A 

d-A 

l-C 
kb 

-% 
kb 

/-A 

/-C d-A 

k;> 

kb 

k( 

kb 

d-C 

d-C 

namely, 

kt = 
_kT Q0Ja1 

4*6° / C A 

, _kT Q0TZa7 
b 4* GcAc 

The reader should work through the various possibilities for 
bimolecular reactions. Here there are cases for which transition 
state theory cannot unambiguously predict all rates; for ex­
ample, if both product molecules C and D are optically active 
and the transition state connects to all four possible products 

(/-C + /-D, /-C + d-D, d-C + l-D, d-C + d-D), one knows 
from reflection symmetry of the transition state only that the 
rate to /-C + /-D to equals the rate to d-C + d-D and the rate 
to /-C + d-D equals that to d-C + l-D, but not how much of 
the total rate through the transition state leads to each alter­
native. 

3. If both transition state and reactants and products are 
optically active, rate constants can be calculated in straight­
forward fashion provided that a given transition state enan­
tiomer connects to only one reactant and product enantiomer. 
For example, if the reaction scheme, from optically active A 
to optically active C, is 

I-A l-C 

d-A -* T* — d-C 

the rate constants for the reactions 
ki 

l-A <=* /-C 
fcf 

d-A <=± d-C 
kb 

are 
_kT Q1Ja1 _kTQ\j*1 

f h Q0Jax
 Kb h Ql/ac 

where Q°A and aA (GT and ffT, Gc and ac) are the partition 
function and symmetry number of one enantiomer of A (T, C). 
On the other hand, if T and T* both give some of each prod­
uct, 

/-A-* T - Z-C 

X 
d-A- T * - d-C 

then from transition state theory we cannot determine the rate 
constants for the reactions 

l-A <=• / .c /-A <=± d-C 
kb kb' 

k( k{ 
d-A <=£ d-C d-A <=± l-C 

kb kb' 

kb " h Q^/ac 

but only the combinations 

k{ f h Ql/aA 

(see the discussion at the end of section III). 
It is interesting to note that if either reactant or product is 

optically inactive the rate constants are unambiguously de­
termined, even when each transition state enantiomer connects 
to both enantiomers of product or reactant. Consider, for ex­
ample, the reaction scheme 

T - Z-C 

X x T * - d-C 

Since A is optically inactive, T and T* are produced at the 
same rate, and symmetry demands—no matter what the 
branching ratio from T to /-C and d-C—that for a racemic 
mixture of T and T* the products /-C and d-C are formed at 
the same rate. The rate constants for the reactions 

k! 

kb 
l-C 

kf> 

kb 
d-C 

are therefore 

kf = 
kTQ\ja1 _kT Q0Ja1 

h Q°A/°A h Qc/ ac 

where Q1 and err (Gc and ac) are the partition function and 
symmetry number of one enantiomer of T (C). 
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VI. Symmetric Reactions 

Symmetric reactions are those in which reactants and 
products are indistinguishable unless like atoms are labeled. 
Hindered rotation of a methyl group, about the bond linking 
it to the rest of the molecule, is a unimolecular symmetric re­
action; the atom exchange H + H2 -» H2 + H is the archetypal 
bimolecular symmetric reaction. 

The subtlety, in dealing with symmetric reactions, lies in the 
proper definition of the rate, since it is not so obvious what the 
rate of reaction is when, really, there is no reaction at all. 
Failure to appreciate this can lead to error. Consider, for ex­
ample, the following comparison which makes it "obvious" that 
the symmetry number method for calculating rate constants 
is incorrect: 

H + D2 — H—D—D — HD + D, 

(T = 2 ( 7 = 1 a = 1 

/Cf = 
kT Ql HD2 

h Q'kQlJ2 
(15a) 

H + H2 — H—H—H — H2 + H, 

(7 = 2 ( 7 = 2 (7 = 2 

_kT e°H3/2 
k(~ TQMJI (15b) 

Aside from differences in the partition functions Q0, reaction 
15a is evidently favored by a factor of 2 over reactions 15b; but 
that is absurd—at given H atom concentration D2 and H2 

molecules collide with H atoms at essentially the same rate. 
The mistake we have made, in this example, is the applica­

tion by rote of the transition state formula to the symmetric 
reaction 15b. Transition state theory calculates the rate of 
passage through the transition state in one direction, from 
reactant to product; here reactant equals product and passage 
through the transition state in either direction results in an H 
atom exchange.8 If we want to calculate the lifetime of an H2 

molecule against H atom exchange, the relevant rate is the 
total rate of passage through the transition state, in either di­
rection; the appropriate rate constant is then twice that given 
in eq 15b, and the paradox, in comparing H-I-D2 with H + H2, 
disappears. 

Similar considerations apply to any symmetric exchange 
reaction A + B —• B + A: the fraction of A molecules that 
undergo exchange, in time interval dt, is 2fcf[B]df where k( is 
the rate constant for passage through the transition state in one 
direction, k{ = (kT/h)(Q°T/G1)ZiQXf^)(QlZa3). Similarly, 
in a unimolecular symmetric reaction A —• A the fraction of 
A molecules that rearrange, in a time interval At, is 2kfdt where 
k( is the rate constant for passage in one direction through the 
transition state, k( = (kT/h)(Q%/(J1)I(QXl <J\)-

So much for the simple rule, "Double the rate for a sym­
metric reaction"; now for the exceptions to the rule. 

Consider the H atom exchange again, but on a potential 
surface with a well rather than a saddle point at the symmetric 
H3 configuration; the transition state for exchange is now 
unsymmetric - H — H - H , perhaps. Compare the reactions H 
+ D2 — HD + H and H + H2 — H2 + H: 

H + D2 — H - D - D -* HD + D, 
( 7 = 2 ( 7 = 1 ( 7 = 1 

f h Q«A/2 ° 6 a ) 

H + H2 — H - H - H — H 2 + H, 
( 7 = 2 ( 7 = 1 (7 = 2 

_ , k T QH kf = 2 * ajbi (16b) 

where the factor of 2 in eq 16b comes from the rate doubling 
for a symmetric reaction. Evidently reaction 16b is now favored 
by a factor of 2! 

The mistake we have made this time is the application of 
elementary transition state theory to a complex reaction. Label 
the hydrogens; the reaction sequence for eq 16b is 

H a + H^H7 H„—Hs-H-, 
H Q - H ^ — H H„Hg + H-, 

The system must pass through two physically distinct config­
urations of labeled transition state to accomplish H atom ex­
change, and in between may rattle around a while in the po­
tential well. 

Standard transition state theory and the doubling rule for 
symmetric reactions do not apply to this exchange or to any 
reaction where more than one physically distinct labeled 
transition state must be crossed on the way to product. Stan­
dard theory applied only if one can find a "reaction path" from 
reactants to products along which the transition state config­
uration is the unique point of highest potential energy. For the 
H + H2 exchange it is easy to show that, no matter what the 
potential surface, the transition state must then have a mirror 
plane that interchanges the exchanging hydrogens. In general, 
though, mirror planes are not necessary. For example, standard 
transition state theory and the doubling rule for symmetric 
reactions can be used to calculate the rate of hindered rotation 
of a methyl group, even when the group is attached to an 
asymmetric carbon, so long as only one transition state con­
figuration lies between each of the three rotational minima. 

Finally, we emphasize that when like atoms are distin­
guished by labels—as, for example, in a classical trajectory 
calculation of reaction rate—a symmetric reaction is no longer 
symmetric, and transition state rate constants must be evalu­
ated in standard fashion. For example, the forward rate con­
stant for the labeled hydrogen atom exchange 

H a 4- HaH 7 

( 7 = 1 

H„—Hg—H^ H„H« + H 

a 
(17) 

k{ = 
kT Q°r 

h Q0HQ0H1 

half that for the symmetric reaction of unlabeled hydrogens. 
This is of course as it should be, since reaction 17 proceeds 
through hydrogen attack at only one end of the hydrogen 
molecule. 

VII. Brjinsted Relations 

Bryinsted relations'6 correlate the catalytic power of an acid 
or base with its acid or base strength as measured by the dis­
sociation constant. Consider, for example, an acid-catalyzed 
isomerization that proceeds by partial transfer of a proton from 
acid HA to reactant R: 

R + HA -* R—H—A -* P + HA 

The second-order catalytic rate constant /CHA is 

Ir - k T 6 T 
H A " h QRQHA 

Because formation of the transition state R—H—A requires 
partial ionization of HA, it is reasonable to suppose that the 
free energy of formation of the transition state is some fraction 
a of the free energy of dissociation of HA, plus a contribution 
from reactant R that is independent of the particular acid HA; 
then 

A:HA = G(KHA)« (18) 
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where A"HA is the acid dissociation constant and G is inde­
pendent of HA. To the extent that the fraction a does not vary 
from acid to acid, the Bronsted relation (18) correlates the 
catalytic power of various acids, in effecting the transformation 
R —*• P, with their acid strengths as measured by A"HA-

Modifications are necessary when one wants to compare 
acids that differ, say, in the number of acidic hydrogens 
available for catalysis. Bronsted reasoned as follows: let p be 
the number of equivalent acidic hydrogens in HA and q the 
number of equivalent sites for proton attachment in the con­
jugate base A - ; the forward rate for dissociation of HA should 
be proportional top, the backward rate to q, so the equilibrium 
constant KHA should be proportional to p/q; then KHAQ/P 
should measure the strength of the acid per elementary dis­
sociation, and the catalytic power of HA, per acidic H, should 
correlate with K^^q/p: 

kHA/p = G{KHAq/p)a (19) 

The modern version of this argument, due to Benson,17 is 
couched in terms of symmetry numbers and asserts that linear 
free energy relations should be applied to equilibrium ex­
pressions from which the symmetry numbers have been re­
moved; thus, 

kT O0 

kuA = ( ( T R ( T H A / T T ) - r - ^ 0 ^ 0 ^ ( T R T H A / V T ) ^ ( C ) " 
" ^HAWJR 

= ( C R C H A / C - T ) G{KHA<?A-/<THA)a (20) 

The Benson version of the Bronsted relation was criticized 
by Bishop and Laidler,3 who proposed a statistical factor 
Bronsted relation which differs from eq 20 only in that &HA 
is taken proportional to the statistical factor / for forming the 
transition state rather than to the ratio of symmetry num­
bers: 

^ H A - ' H A G ( A ^ H A T A - Z T H A ) " (21) 

The difference between eq 20 and 21 is the same difference 
between symmetry number and statistical factor rate constants 
that we have discussed above, and we reject the statistical 
factor Bro'nsted relation for the same reason that we reject the 
statistical factor rate constant. Granted the basic assumption, 
common to both eq 20 and 21, that linear free energy relations 
apply to equilibrum expressions from which symmetry num­
bers have been removed, Benson's modification of the Bronsted 
relation to take account of molecular symmetry is correct. 

As an example, consider the following hypothetical catalysis, 
discussed by Bishop and Laidler:3 

COOH 

COO -

CT=I 

+ R 
CT = 1 

/ = 1 
» 

r = 2 

COO-. 
".H--- -R 

COO' 

CT= 2 

Here R is supposed to be sufficiently symmetric that the 
symmetry number of the transition state is 2. The statistical 
factor method then predicts a forward rate constant twice that 
given by the symmetry number method, just as it would if the 
reaction in fact led to complete proton transfer to R; 

COOH 

I 
COO -

0 = 1 

+ R 
CT = 1 

/ = 1 

r = 2 

COO-. 

COO" 
"H—-R 

. - ! COO -

==Z I + HR+ 

' = i COO" CT = 1 
CT= 2 

In the latter instance the statistical factor method is wrong and 
in fact would give an incorrect equilibrium constant since the 
statistical factor r for returning to reactant from the transition 
state differs from the factor r for returning to product. 

In Brytnsted's notation, Benson's Bronsted relation for the 
catalysis (18) has/; = 1^, q = 1. One can understand this from 

BrjJnsted's point of view: if acid catalysis (18) is in fact anal­
ogous to acid dissociation, then acid dissociation must proceed 
through a symmetric transition state in which the proton is 
shared by two carboxylates; therefore the number q of sites 
available for proton attachment in the conjugate base 
(CC>2)22- is not 2 but 1; and then if the ratio q/p is to be equal 
to aA-IOHA - 2—as it is in both the symmetry number eq 20 
and the statistical factor eq 21—we must set p = '/2-

VIII. Examples 

In this section we consider several reactions that have been 
discussed by other writers on the subject. The reader should 
not be distracted by the implausible transition state structures 
that appear below; it is the principle of the thing that mat­
ters. 

1. Schlag,1 Bishop and Laidler,3 and Murrell and Laidler13 

considered dehydrogenation of cyclopentene via a transition 
state in which the departing hydrogens lie in the plane of the 
ring: 

The symmetry factor in the forward rate—that is, (TA/<TT, in 
the notation of previous sections—is 2; the symmetry factor 
in the backward rate, ac^o/oT, is 4. 

According to the statistical factor method, the symmetry 
factor in the backward rate is 4—in agreement with the sym­
metry number method—since H2 can attack either double 
bond, with either end of the H2 closer to the CH2 group. 

In the forward direction the statistical factor method is 
ambiguous. If the departing hydrogens must be cis with respect 
to the ring, in the reactant cyclopentene, then / = 4—there are 
four such hydrogen pairs—andr = 2. If the departing hydro­
gens can be either cis or trans with respect to the ring, then / 
= 8 and r = 4. Which is the case depends on the potential 
surface, and this is an excellent illustration of the point that 
in general we need more than just the structure of reactants 
and transition state to determine a statistical factor, but in 
either case the statistical factor method is wrong and the sta­
tistical factor rate expressions would not give the correct 
equilibrium constant for the reaction. 

If the transition state is nonplanar, and the departing hy­
drogens must be cis to the ring, 

o = 2 o=\ 
the statistical factor and symmetry number methods agree; the 
symmetry factor in the forward rate is 4, since the transition 
state is optically active.24 

2. Schlag1 considered hydrogen abstraction from sym-di-
chloroacetone by an atom A (eq 22); the transition state is 

O Cl 
l = 4 • A + CIHoC—C—CH2Cl 7 - A—H—C—C 
r= 2 I N CT= 2 

H CH- 'C1 

CT=I 

O 

Il 
—*• AH 4- ClHC—C—CH2Cl (22) 

supposed to be planar, except for the two hydrogens at the right 
end which are symmetrically placed with respect to the 
plane. 

According to the symmetry number method the symmetry 



Pollak, Pechukas / Symmetry Numbers in Absolute Rate Theory 2991 

factor in the forward direction is 2; the statistical factor method 
gives 4, since any one of the four hydrogens can be attacked 
by A. 

The symmetry number method is correct, but one is inclined 
to disbelief: should not the symmetry factor be 4, since there 
are four hydrogens to abstract? No; by this reasoning we can 
conclude only that the rate constant for reaction 22 must be 
four times as large as that for the monodeuterated compound, 
neglecting effects due to the mass difference between D and 
H. The reader may verify that this is the case when the rate 
constants are calculated by the symmetry number method, 
remembering that in eq 23 the reactant molecule is optically 

O 

A + ClDHC—C—CH2Cl 

O 

AD + ClHC—C—CH2Cl (23) 

active and the transition state is not. There is no contradiction 
between the symmetry number method and our certainty that 
in reaction 22 the four hydrogens are attacked at the same 
rate. 

3. Here is another example in the same vein, isomerization 
of cyclopropane to propene via a transition state in which the 
transferring hydrogen and the hydrogen it leaves behind both 
lie in the plane of the ring1'3-13 (eq 24). The symmetry factor 

CH., 
/ \ 

CH2-CH2 

0=6 

I = 12 

•= 2 

H-CH, 
I/ \ 
C CH, 

CH1CH=CH, (24) 

/ 

in the forward rate is 6 according to the symmetry number 
method, 12 according to the statistical factor method. The 
symmetry number method is correct, but one wonders why, 
since there are clearly 12 different ways of effecting isomer­
ization—any hydrogen can transfer to either adjacent car­
bon—and the rate for reaction 24 ought to be 12 times that for 
a single transfer of a definite H to a definite C. 

To see that it is, label the three carbons and one of the hy­
drogens and consider reaction 25. There is only one way of 

H-CjH2 

17 
Co-/ 

\ 
- C , H, 

0=1 0=1 

QHoH2—C1 1H=C7H2 (25) 

effecting this reaction, and the rate constant for eq 25 is Vn that 
for reaction 24, according to the symmetry number method, 
for the reactant in eq 24 is optically active and the transition 
state is not. 

4. The mechanism of cyclohexane inversion from the chair 
to the boat configuration has been discussed in the litera­
ture.25"28 Two transition state structures have been suggested, 
one with Cs symmetry and the other with C 2 symmetry (for 
nice diagrams see ref 28). The symmetry number of chair cy­
clohexane (Did) is 6; the symmetry number of a Cj structure 
is 1, the symmetry number of a C2 structure is 2 but the 
structure must be optically active; therefore in either mecha­
nism the symmetry factor for chair to boat inversion is 6, in 
accord with our intuition that any one of the six carbons in the 
chair can "flip up" to become the prow of the boat. 

5. Here, finally, is an example of a symmetric reaction, in­
version of ethyl cation through a transition state with a plane 
of symmetry defined by the CH2 group:29-31 

H* 
,H 
*H 

"HV 
H--C-
H 

,-H 

V 
A 

€ C; V 
0=2 

Notice that the return factor r from the transition state is 2 
since either of the nonplanar H's in the transition state can 
form a three-center bond with the two carbons; one bond gives 
"reactant", the other gives "product", but in this symmetric 
reaction reactants are products. 

The symmetry factor in the inversion rate constant is 2, 
according to the symmetry number method, but then the rate 
constant must be doubled since this is a symmetric reaction, 
and accordingly the symmetry number method and the sta­
tistical factor method agree that the appropriate symmetry 
factor for this inversion is 4. 
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